Region Containing the Zeros of Polynomials

Irfan Ahmed Faiq
Department of Mathematics, National Institute of Technology Srinagar, India
E-mail: abliman22@yahoo.com, faiqirfan85@gmail.com

Abstract

It was proved by Joyal, Labelle and Rahman [A. Joyal, G. Labelle and Q. I. Rahman, On the location of zeros of polynomials, Canad. Math. J., Bull., 10(1967), 53-63] that if $p>1$, then all the zeros of $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ are contained in the circle $|z| \leq k$, where $k \geq \max \left(1,\left|a_{n-1}\right|\right)$ is a root of the equation $$
\left(|z|-\left|a_{n}\right|\right)^{q}\left(|z|^{q}-1\right)-B^{q}=0, \quad p^{-1}+q^{-1}=1
$$

where

$$
B=\left\{\sum_{j=0}^{n-2}\left|a_{j}\right|^{p}\right\}^{\frac{1}{p}}, \quad p>1
$$

In this paper, we not only generalize the above result but a verity of interesting results can be deduced from it.

Keywords: Polynomials, Maximum Modulus, Inequalities in the complex Domain, Zeros.
2010 Mathematics subject classification: 30A10, 30C10, 30D15.

1. INTRODUCTION AND STATEMENT OF RESULTS

The problem of finding out the region which contains all or a prescribed number of zeros of a polynomial has long history and dates back to the earliest days when the geometric representation of complex numbers was introduced into mathematics. Since the days of Gauss [2] and Cauchy [1], many mathematicians have contributed to the further growth of the subject.
We first mention the following result due to Cauchy:
Theorem A. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n. If $M=\max _{1 \leq j \leq n}\left|\frac{a_{j}}{a_{n}}\right|$, then all the zeros of $P(z)$ lie in

$$
|z| \leq 1+M
$$

As an improvement of Theorem A,Joyal, Labelle and Rahman [3], proved the following:
Theorem B. If $B=\left\{\sum_{j=0}^{n-2}\left|a_{j}\right|^{p}\right\}^{\frac{1}{p}}, p>1$ then all the zeros of $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ are contained in the circle $|z| \leq k$, where $k \geq \max \left(1,\left|a_{n-1}\right|\right)$ is a root of the equation

$$
\left(|z|-\left|a_{n}\right|\right)^{q}\left(|z|^{q}-1\right)-B^{q}=0, \quad p^{-1}+q^{-1}=1 .
$$

The following result is due to Montel and Marty [4, p.107].

Theorem C. All the zeros of the polynomial $P(z)=a_{0}+$ $a_{1} z+\cdots+a_{n-1} z^{n-1}+z^{n}$
Lie in $|z| \leq \max \left(L, L^{\frac{1}{n}}\right)$, where L is the length of the polygonal line joining in the succession the points $0, a_{0}, a_{1}, \ldots, a_{n-1}, 1$; that is

$$
L=\left|a_{0}\right|+\left|a_{1}-a_{0}\right|+\ldots+\left|a_{n-1}-a_{n-2}\right|+\left|1-a_{n-1}\right| .
$$

As a generalization of Theorem A and Theorem B Mohammad [5], proved the following:

Theorem D. If $0<a_{i-1} \leq k a_{i,} k>0$, then all the zeros of $P(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}$ lie in $|z| \leq \max \left(M, M^{\frac{1}{n}}\right)$, where

$$
M=\frac{\left(a_{0}+a_{1}+\ldots a_{n-1}\right)}{a_{n}}(k-1)+k .
$$

In this paper, we first prove a more general result which not only improves upon Theorem C and Theorem D but also a variety of interesting results can be deduced from it by a fairly uniform procedure.
Theorem 1. If $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ is a polynomial of degree n, with $\operatorname{Re} a_{i}=\alpha_{i}$ and $\operatorname{Im} a_{i}=\beta_{i}$ for $i=0,1,2, \ldots, n-1$, then all the zeros of $P(z)$ will lie in $|z| \leq R=\max \left(L_{p}, L_{p} \frac{1}{n}\right)$, where

$$
\begin{aligned}
L_{p}=(n+2)^{\frac{1}{q}}[& \left(\sum_{i=1}^{n+2} \mid \alpha_{n-i+2} t_{1} t_{2}+\alpha_{n-i+1}\left(t_{1}-t_{2}\right)\right. \\
& \left.-\left.\alpha_{n-i}\right|^{p}\right)^{\frac{1}{p}} \\
& +\left(\sum_{i=1}^{n+2} \mid \beta_{n-i+2} t_{1} t_{2}+\beta_{n-i+1}\left(t_{1}-t_{2}\right)\right. \\
& \left.\left.-\left.\beta_{n-i}\right|^{p}\right)^{\frac{1}{p}}\right]
\end{aligned}
$$

$a_{-1}=a_{-2}=a_{n+1}=0, p^{-1}+q^{-1}=1$ and $t_{1}>t_{2} \geq 0$.

For $t_{1}=1$ and $t_{2}=0$, we obtain the following:
Corollary 1.1. If $P(z)=z^{n}+a_{n-1} z^{n-1}+\ldots+a_{1} z+a_{0}$ is a polynomial of degree n, then all the zero of $P(z)$ will lie n $|z| \leq R=\max \left(L_{p}, L_{p} \frac{1}{n}\right)$, where

$$
\begin{gathered}
L_{p}=(n+2)^{\frac{1}{q}}\left[\left(\sum_{i=1}^{n+2}\left|\alpha_{n-i+1}-\alpha_{n-i}\right|^{p}\right)^{\frac{1}{p}}\right. \\
\left.+\left(\sum_{i=1}^{n+2}\left|\beta_{n-i+1}-\beta_{n-i}\right|^{p}\right)^{\frac{1}{p}}\right], \\
p^{-1}+q^{-1}=1 .
\end{gathered}
$$

Taking $\beta_{i}=0, \forall i$ and letting $q \rightarrow \infty$ in Corollary 1.1 so that $p \rightarrow 1$ and $(n+2)^{\frac{1}{q}} \rightarrow 1$, we obtain Theorem C, a result due to Montel and Marty.

Next, we prove:
Theorem 2.Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re} a_{i}=\alpha_{i}$ and $\operatorname{Im} a_{i}=\beta_{i}$ for $i=0,1,2, \ldots, n$, such that for some $t_{1}>t_{2} \geq 0$ with

$$
\begin{aligned}
a_{i} t_{1} t_{2}+a_{i-1}\left(t_{1}-t_{2}\right)-a_{i-2} \geq 0, \quad i \\
=1,2, \ldots, n+1, \quad a_{-1}=a_{-2}=a_{n+1}=0
\end{aligned}
$$

then all the zeros of $P(z)$ will lie in $|z| \leq \max \left(M, M^{\frac{1}{n}}\right)$, where
M
$=\frac{\left(t_{1}-1\right)\left(t_{2}+1\right) \sum_{i=0}^{n-1}\left(\alpha_{i}+\beta_{i}\right)+\left(t_{2}\left(t_{1}-1\right)+t_{1}\right)\left(\alpha_{n}+\beta_{n}\right)}{\left|a_{n}\right|}$.
Fort ${ }_{2}=0$, we obtain the following result:
Corollary 1.2.Let $P(z)=\sum_{i=0}^{n} a_{i} z^{i}$ be a polynomial of degree n with $\operatorname{Re} a_{i}=\alpha_{i}$ and $\operatorname{Im} a_{i}=\beta_{i}$ for $i=0,1,2, \ldots, n$, such that for some $t_{1}>0$ with

$$
\begin{gathered}
a_{i-1} t_{1}-a_{i-2} \geq 0, \quad i=1,2, \ldots, n+1, \quad a_{-1}=a_{-2}=a_{n+1} \\
=0,
\end{gathered}
$$

then all the zeros of $P(z)$ will lie in $|z| \leq \max \left(M, M^{\frac{1}{n}}\right)$, where

$$
M=\frac{\left(t_{1}-1\right) \sum_{i=0}^{n-1}\left(\alpha_{i}+\beta_{i}\right)+t_{1}\left(\alpha_{n}+\beta_{n}\right)}{\left|a_{n}\right|}
$$

For $t_{1}=k$ and $\beta_{i}=0 \forall i$ we get Theorem D , result due to Mohammad. Further for $t_{1}=1$, we get Enestrom Kakeya Theorem.

2. PROOF OF THEOREMS

Proof of Theorem 1. Consider

$$
F(z)=\left(t_{2}+z\right)\left(t_{1}-z\right) P(z)
$$

$$
\begin{gathered}
=\left\{t_{1} t_{2}+\left(t_{1}-t_{2}\right) z-z^{2}\right\}\left\{z^{n}\right. \\
+\left[\alpha_{n-1} z^{n-1}+\cdots+\alpha_{1} z+\alpha_{0}\right] \\
\quad+i\left[\beta_{n-1} z^{n-1}+\cdots+\beta_{1} z\right. \\
\left.\left.=-\beta_{0}\right]\right\} . \quad \\
+\left\{\alpha_{2} t_{1} t_{2}+\alpha_{1}\left(t_{1}-t_{2}\right)-\alpha_{0}\right\} z^{2}+\left\{\alpha_{1} t_{1} t_{2}+\alpha_{0}\left(t_{1}-t_{2}\right)\right\} z \\
+ \\
\left.+\alpha_{0} t_{1} t_{2}\right] \\
+i\left[\left\{\left(t_{1}-t_{1}-t_{2}\right)-\beta_{n-1}\right\} z^{n+1}\right. \\
+\left\{t_{1} t_{2}+\beta_{n-1}\left(t_{1}-t_{2}\right)-\beta_{n-2}\right\} z^{n}+\cdots \\
+ \\
+\left\{\beta_{2} t_{1} t_{2}+\beta_{1}\left(t_{1}-t_{2}\right)-\beta_{0}\right\} z^{2} \\
\left.+\left\{\beta_{1} t_{1} t_{2}+\beta_{0}\left(t_{1}-t_{2}\right)\right\} z+\beta_{0} t_{1} t_{2}\right] .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& |F(z)| \\
& \begin{array}{l}
\geq|z|^{n+2}\left\{1-\left(\sum_{i=1}^{n+2} \frac{\left|\alpha_{n-i+2} t_{1} t_{2}+\alpha_{n-i+1}\left(t_{1}-t_{2}\right)-\alpha_{n-i}\right|}{|z|^{i}}\right)\right. \\
\left.\quad+\left(\sum_{i=1}^{n+2} \frac{\left|\beta_{n-i+2} t_{1} t_{2}+\beta_{n-i+1}\left(t_{1}-t_{2}\right)-\beta_{n-i}\right|}{|z|^{i}}\right)\right\} . \\
\geq|z|^{n+2}\{1
\end{array}
\end{aligned}
$$

$$
-(n+2)^{\frac{1}{q}}\left(\sum_{i=1}^{n+2} \frac{\left|\alpha_{n-i+2} t_{1} t_{2}+\alpha_{n-i+1}\left(t_{1}-t_{2}\right)-\alpha_{n-i}\right|^{p}}{|z|^{i p}}\right)^{\frac{1}{p}}
$$

$$
\begin{equation*}
\left.\left.+\left(\sum_{i=1}^{n+2} \frac{\left|\beta_{n-i+2} t_{1} t_{2}+\beta_{n-i+1}\left(t_{1}-t_{2}\right)-\beta_{n-i}\right|^{p}}{|z|^{i p}}\right)^{\frac{1}{p}}\right]\right\} \tag{1.2.1}
\end{equation*}
$$

If $\quad L_{p} \geq 1, \max \left(L_{p}, L_{P}^{\frac{1}{n}}\right)=L_{p}$. Let $\quad|z| \geq 1$, then $\frac{1}{|z|^{i p}} \leq$ $\frac{1}{|z|^{p}}(i=1,2, \ldots, n+2)$. Hence inequality (1.2.1) implies that if $|z|>L_{p}$, then

$$
\begin{aligned}
|F(z)| \geq|z|^{n+2} & \{
\end{aligned}\left\{\begin{array}{l}
1 \\
\\
-\frac{(n+2)^{\frac{1}{q}}}{|z|}\left[\left(\sum_{i=1}^{n+2} \mid \alpha_{n-i+2} t_{1} t_{2}\right.\right.
\end{array} \quad \begin{array}{rl}
\end{array}\right.
$$

$$
\begin{aligned}
& \quad+\left(\sum_{i=1}^{n+2} \mid \beta_{n-i+2} t_{1} t_{2}\right. \\
& \left.\left.\left.+\beta_{n-i+1}\left(t_{1}-t_{2}\right)-\left.\beta_{n-i}\right|^{p}\right)^{\frac{1}{p}}\right]\right\} . \\
& =|z|^{n+2}(1 \\
& \left.-\frac{L_{p}}{|z|}\right) .
\end{aligned}
$$

>0.
Again If $L_{p} \leq 1, \max \left(L_{p}, L_{P} \frac{1}{n}\right)=L_{P} \frac{1}{n}$. Let $|z| \leq 1$, then $\frac{1}{|z|^{i p}} \leq \frac{1}{|z|^{n p}}(i=1,2, \ldots, n+2)$. Hence by inequality (1.2.1), if $|z|>L_{P}{ }^{\frac{1}{n}}$, then

$$
\begin{aligned}
& |F(z)| \geq|z|^{n+2}\{1 \\
& -\frac{(n+2)^{\frac{1}{q}}}{|z|^{n}}\left[\left(\sum_{i=1}^{n+2} \mid \alpha_{n-i+2} t_{1} t_{2}\right.\right. \\
& \left.+\alpha_{n-i+1}\left(t_{1}-t_{2}\right)-\left.\alpha_{n-i}\right|^{p}\right)^{\frac{1}{p}} \\
& +\left(\sum_{i=1}^{n+2} \mid \beta_{n-i+2} t_{1} t_{2}\right. \\
& \left.\left.\left.+\beta_{n-i+1}\left(t_{1}-t_{2}\right)-\left.\beta_{n-i}\right|^{p}\right)^{\frac{1}{p}}\right]\right\} \text {. } \\
& =|z|^{n+2}(1 \\
& \left.-\frac{L_{p}}{|z|^{n}}\right) .
\end{aligned}
$$

>0.
Hence $F(z)$ does not vanish for $|z|>\max \left(L_{p}, L_{P} \frac{1}{n}\right)$. Therefore all zeros of $F(z)$ will lie in $|z| \leq R=\max \left(L_{p}, L_{P}{ }^{\frac{1}{n}}\right)$. Since all the zeros of $P(z)$ are also the zeros of $F(z)$ the result follows.

Applying Theorem 1 to the polynomial $\frac{F(z)}{a_{n}}$, we have all the zeros of $P(z)$ lie in $|z| \leq \max \left(L_{1}, L_{1} \frac{1}{n}\right)$,

$$
t_{1} t_{2}\left(\beta_{0}+\beta_{1}+\ldots+\beta_{n}\right)+\left(t_{1}-t_{2}\right)\left(\beta_{0}+\beta_{1}+\ldots+\beta_{n}\right)-
$$

$$
+\frac{\left(\beta_{0}+\beta_{1}+\ldots+\beta_{n-1}\right)}{\left|a_{n}\right|}
$$

$$
=\frac{\left(t_{1}-1\right)\left(t_{2}+1\right) \sum_{i=0}^{n-1}\left(\alpha_{i}+\beta_{i}\right)+\left(t_{2}\left(t_{1}-1\right)+t_{1}\right)\left(\alpha_{n}+\beta_{n}\right)}{\left|a_{n}\right|} .
$$

$$
=M
$$

This completes the proof.

REFERENCES

[1] A. L. Cauchy, Exercise de mathematique. Oeuvres. (2), 9(1829), 122.
[2] K. F. Gauss, BeitrogeZurTheorie der algebraischenGleichungen, Wiss. Gottingen, 4(1850). Ges., Werke. 3, 73-102.
[3] A. Joyal, G. Labelle and Q. I. Rahman, On the location of zeros of polynomials,Canad. Math. J., Bull., 10(1967), 53-63.
[4] M. Marden, The geometry of zeros, Amer, Math. Soc. Math. Surveys, NewYork, 3(1949).
[5] Q. G. Mohammad, Location of zeros of polynomials,Amer. Math. Monthly,74, 3(1967), 290-292.

$$
\begin{aligned}
& L_{1}=\frac{\sum_{i=0}^{n+1}\left|\alpha_{i} t_{1} t_{2}+\alpha_{i-1}\left(t_{1}-t_{2}\right)-\alpha_{i-2}\right|}{\left|a_{n}\right|} \\
& +\frac{\sum_{i=0}^{n+1}\left|\beta_{i} t_{1} t_{2}+\beta_{i-1}\left(t_{1}-t_{2}\right)-\beta_{i-2}\right|}{\left|a_{n}\right|} . \\
& =\frac{\begin{array}{c}
t_{1} t_{2}\left(\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n}\right)+\left(t_{1}-t_{2}\right)\left(\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n}\right)- \\
\left(\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n-1}\right)
\end{array}}{\left|a_{n}\right|}
\end{aligned}
$$

$$
\begin{aligned}
& =-a_{n} z^{n+2}+\left[\left\{\left(t_{1}-t_{2}\right)-\alpha_{n-1}\right\} z^{n+1}\right. \\
& +\left\{t_{1} t_{2}+\alpha_{n-1}\left(t_{1}-t_{2}\right)-\alpha_{n-2}\right\} z^{n}+\cdots \\
& +\left\{\alpha_{2} t_{1} t_{2}+\alpha_{1}\left(t_{1}-t_{2}\right)-\alpha_{0}\right\} z^{2}+\left\{\alpha_{1} t_{1} t_{2}+\alpha_{0}\left(t_{1}-t_{2}\right)\right\} z \\
& \left.+\alpha_{0} t_{1} t_{2}\right] \\
& +i\left[\left\{\left(t_{1}-t_{2}\right)-\beta_{n-1}\right\} z^{n+1}\right. \\
& +\left\{t_{1} t_{2}+\beta_{n-1}\left(t_{1}-t_{2}\right)-\beta_{n-2}\right\} z^{n}+\cdots \\
& +\left\{\beta_{2} t_{1} t_{2}+\beta_{1}\left(t_{1}-t_{2}\right)-\beta_{0}\right\} z^{2}+\left\{\beta_{1} t_{1} t_{2}+\beta_{0}\left(t_{1}-t_{2}\right)\right\} z \\
& \left.+\beta_{0} t_{1} t_{2}\right] .
\end{aligned}
$$

Proof of Theorem 2. Consider

$$
\begin{aligned}
F(z)= & \left(t_{2}+z\right)\left(t_{1}-z\right) P(z) \\
=\left\{t_{1} t_{2}\right. & \left.+\left(t_{1}-t_{2}\right) z-z^{2}\right\}\left\{a_{n} z^{n}\right. \\
& \quad+\left[\alpha_{n-1} z^{n-1}+\cdots+\alpha_{1} z+\alpha_{0}\right] \\
& \left.+i\left[\beta_{n-1} z^{n-1}+\cdots+\beta_{1} z+\beta_{0}\right]\right\}
\end{aligned}
$$

